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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a
global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic dis-
ease manifestations that continue to impact many patients long after the resolution of viral replication.
There is therefore great interest in understanding the host factors that contribute to COVID-19 patho-
genesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with
roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that
HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then
we briefly summarize the known roles of HA in airway inflammation and immunity. We then address
what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome
(COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection
(PASC), also known as “long COVID” as well as in COVID-associated fibrosis. Finally, we discuss the
potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug
hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target
for the treatment of COVID-19.

© 2023 Elsevier B.V. All rights reserved.

cases and 6.5 million deaths as of September 2022
Introduction

In late 2019, the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a new and
highly pathogenic strain of coronavirus, was identi-
fied in China [1]. It soon became clear that infection
with SARS-CoV-2 can lead to coronavirus disease
(COVID-19), including potentially severe respiratory
tract disease [2,3]. By February of 2020, Chinese
healthcare workers encountered an average of 3000
new cases per day, and on March 11, 2020, the
World Health Organization (WHO) officially catego-
rized the worldwide outbreak of COVID-19 a pan-
demic [1,3]. The virus has caused a worldwide
health crisis causing nearly 604 million confirmed
r B.V. All rights reserved.
[1,4�7].
Three years after it emerged and despite the

development of effective vaccines, the COVID-19
pandemic continues to spread. Moreover, many indi-
viduals suffer persistent, debilitating post-acute
sequelae of SARS-CoV-2 infection (PASC), also
known as “long COVID” [8�10]. Therefore, there is
great interest in identifying additional inflammatory
factors and pathways that contribute to COVID-19,
in the hope that these might lead to novel therapeu-
tic targets and biomarkers.

The purpose of this article is to review the existing
data on one such factor, the extracellular matrix
polymer hyaluronan (HA), in COVID-19 disease and
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to critically evaluate the hypothesis that HA drives
COVID-19 pathogenesis. We first provide a short
overview of HA in inflammation and cellular metabo-
lism, particularly in the context of pulmonary dis-
ease. We then briefly review the literature on
COVID-19 acute respiratory syndrome (ARDS) and
PASC. Next, we address what is known about HA in
acute-COVID and PASC. Finally, we discuss poten-
tial therapeutics for COVID-19 that target HA. This
review provides a foundation for understanding the
role of HA in the pathogenesis and treatment of
COVID-19.
HA is elevated in airway inflammation,
lung infection, and chronic fibrotic
diseases of the lung

HA is a glycosaminoglycan with important roles in
inflammation and cellular metabolism [11]. HA is a
polysaccharide comprised of a repeating disaccha-
ride that plays important roles in healthy tissues.
Unlike other glycosaminoglycans, it is not linked to a
protein core and instead exists as elongated, highly
charged strands [12]. HA is extremely hygroscopic
and is able to absorb water over 1000 times its own
molecular weight [13,14]. In healthy tissues its high
molecular weight and flexible polymer chain struc-
ture allow it to form viscoelastic barriers. In healthy
tissues, HA provides structural support to skin,
joints, and other tissues [12]. Within the lung, HA is
a crucial component of bronchial basement mem-
branes, bronchiolar epithelium, alveolar tissues, and
the endothelial glycocalyx. In addition, HA is found
at the surface of alveolar macrophages and Type II
alveolar epithelial cells [15].
At these sites, HA is typically bound to a diverse

group of HA binding proteins, called hyaladherins.
These HA�hyaladherin macromolecular complexes
interact with a variety of cell-surface proteins, growth
factors, chemokines, and proteases to modulate the
adhesive properties and activation state of inflam-
matory cells [16�18]. Examples of hyaladherins
include inter-a-trypsin-inhibitor (IaI) and TNF-stimu-
lated gene-6 (TSG-6) [19�23].
TSG-6 catalyzes the covalent transfer of heavy

chains (HCs)(also known as HA-associated protein
SHAP) from IaI to HA [24]. This results in the forma-
tion of the HC��HA complex, a form of HA that pro-
motes the adhesion of leukocytes to HA-rich
matrices and thereby influences the inflammatory
response [21,25,26]. Elements of IaI and versican,
including the heavy chains (HC) of IaI, can interact
with HA, forming a new HC��HA complex called HA
cables. These HC��HA complexes promote the
binding of leukocytes to the ECM and monocytes to
the cell membrane, contributing to tissue destruction
[21,25] can also be potently anti-inflammatory (for
example, in amniotic membrane where it polarizes
macrophages to M2 phenotype [27]. There is evi-
dence that TSG-6 drives pathology in a number of
lung conditions (e.g., ozone-induced airway hyper-
responsiveness), whereas it can be protective in
others (e.g., LPS-induced lung injury), as recently
reviewed [28]. In these and other ways, hyaladherins
modulate interactions between ECM and the innate
immune system.

At sites of tissue injury and infection, both HA pro-
duction and catabolism are greatly upregulated lead-
ing to the accumulation of HA fragments. In this
context, HA promotes leukocyte migration and acti-
vation within inflamed tissues [29,30]. The capacity
of HA to absorb water drives edema and swelling in
ways that increase leukocyte extravasation and tis-
sue stiffness [31].

The biological function of HA is influenced by its
size. High-molecular weight HA (HMW-HA);
»2 £ 105 - 7 £ 106Da, predominates in most tis-
sues under healthy conditions and dampens inflam-
mation [32�36]. In contrast, fragmented low-
molecular weight HA (LMW-HA); <120 kDa, has
been reported to be pro-inflammatory and predomi-
nates at sites of active inflammation [37]. Recent
work suggests LMW-HA octa-saccharides prove
effective monovalent competitors HMW-HA receptor
interactions, potentially abrogating the anti-inflam-
matory effects of HMW-HA [38]. Moreover, LMW-HA
is reported to function as an endogenous danger-
associated molecular pattern molecule (DAMPs)
that triggers inflammatory responses through TLR4
[39�41]. In this way, LMW-HA fragments may pro-
mote inflammatory cell recruitment and release of
inflammatory cytokines [42,43]. Alternatively, HA
may also distinctly activate a complex of TLR4/MD2/
CD44 receptors [44].

However, this body of literature is complicated by
publications which suggest that bacterial contami-
nants as well as DNA may have played a role in
some of these pro-inflammatory effects [15,45,46].
Direct data demonstrating binding between HA and
TLR4 are also absent. There is clearly a need to
learn more about the role of HA in the host’s
response to pathogens. Several excellent reviews
summarize the current state of knowledge regarding
the role of HA size in inflammatory responses and a
detailed investigation of the receptors involved in
this biology [42,47�49].

The amount and size of HA polymers are regu-
lated both at the level of HA synthesis and HA catab-
olism. HA is synthesized by three membrane-bound
synthase enzymes (HAS1, HAS2, HAS3), found on
the inner surface of the plasma membrane, which
extrude HA as a polymer of repeating disaccharide
units of N-acetylglucosamine and glucuronic acid
[50]. The HA synthases generate HA polymers of
distinct lengths [51] in response to inflammatory
cytokines (i.e. TNF and interferons [52]), including in
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viral respiratory infections [53]. HA is degraded in
part by the activity of hyaluronidases [30,54,55]
which catalyze the cleavage of HMW-HA strands
into smaller, LMW-HA fragments generally of
<120 kDa [30,56]. Mechanical force, injury, infec-
tion, and oxidative stress also contribute to HA
catabolism and result in LMW-HA [57,58]. The biol-
ogy of HA synthesis and catabolism has been
addressed in excellent reviews elsewhere [42].
There is an abundance of data implicating HA in

inflammatory diseases of the lung. Research has
found heightened HA levels in cases of chronic
obstructive pulmonary disease (COPD) [59,60],
asthma, and pulmonary hypertension (pH) [61]. HA
is also associated with fibrotic diseases in the lung,
including IPF [62�64], a disease characterized by
progressive lung scarring, chronic respiratory failure,
and severe hypoxemia [65]. While the causes of IPF
remain unknown, HA has been shown to be impor-
tant for regulating disease progression and HA-
based treatments have shown efficacy in treating
chronic inflammation and collagen deposition in IPF
[66�69]. Enhanced expression of HA through over-
expression of HAS2 has been demonstrated to
exacerbate fibrotic injury of the lung [70]. Similarly,
in models of pulmonary hypertension, increased HA
has been detected [71�74], and its role in promoting
vascular remodeling has been identified using gain
and loss of function approaches targeting HAS2
[72]. Herein, HAS2 deletion protected mice from
developing pH yet overexpression of HAS in smooth
muscle cells led to worsening pH.
In line with these studies, inhibition of HA synthe-

sis ameliorates disease in many of these settings
[71,75�77]. While HA is increased in many diseases
featuring airway injury or inflammation, the degree of
accumulation and localization within the tissue
parenchyma [15] can vary greatly. However, a more
nuanced view of HA in these contexts is needed as
in some settings HA can be anti-fibrotic while in
others it can be pro-fibrotic [62,78].
HA is also implicated in ARDS [79,80]. Ventilator-

induced lung injury promotes the synthesis of LMW-
HA via HAS3 upregulation in fibroblasts, leading to
increased inflammatory cell infiltration, vascular
leak, and both interstitial and alveolar edema [81]. In
combination with alveolar collapse, this contributes
to the ventilation-perfusion mismatch, hypoxia, and
respiratory failure seen in ARDS. HA levels in bron-
choalveolar lavage fluid are associated with organ
failure in ARDS [79] and there is an inverse correla-
tion between the concentration of HA (BAL and
serum) and the pulmonary oxygenation index in
patients with ARDS [82,83]. Using experimental
models of ARDS, investigators have demonstrated
that inhibition of HA reduced markers of cell injury
[84,85].
The role of HA in lung inflammation is a large and

complex subject and the sections above only
provide a short overview of this biology. For further
information, we refer the reader to several excellent
reviews [15,30,51,59].
COVID-19 infection is associated with
both acute disease as well as long-term
sequalae post-infection

Following transmission via respiratory droplets,
SARS-CoV2 binds to multiple cell types, including
epithelial cells, alveolar epithelial cells, vascular
endothelial cells, fibroblasts and macrophages via
the angiotensin-converting enzyme 2 (ACE2). The
molecular mechanisms involved in SARS-CoV2
infection and the pathophysiology of COVID-19
infection have been addressed in depth elsewhere
[86, 91, 87, 88] However, in brief, upon infection,
host cells undergo necrosis, pyroptosis and necrop-
tosis as a result of direct viral toxicity. Cellular debris
and viral components then trigger innate immune
pathogen recognition receptors. They similarly acti-
vate pathways downstream of the ACE2 receptors
which SARS-CoV-2 uses for host entry [89�91].
Induction of cytokine “storm” and endothelial dys-
function, topics addressed later in this review, drive
the inflammatory cascade that underlies acute
COVID-19 [92,93]. This pathophysiology can impact
nearly every organ system, including the lungs,
heart [94], neurologic tissues [95], and gastrointesti-
nal tract [96].

There is substantial heterogeneity in the patterns
of disease associated with COVID-19 [97,98]. Mild
cases of acute COVID-19 often display symptoms
typical of upper respiratory tract infections, including
fever, fatigue, and sore throat [2]. Older populations
and patients with risk factors (e.g. diabetes, immune
suppression, etc.) are prone to develop more severe
respiratory symptoms [3,99]. Mortality is linked to
risk factors including age, diabetes, underlying
immune suppression, and host ethnic background
and genetics [100�103].

Severe cases of COVID-19 can manifest as
ARDS [104,105], a respiratory syndrome character-
ized by widespread pulmonary inflammation, airway
edema, and poor oxygenation [50] which often
necessitates prolonged, challenging mechanical
ventilation. Many computed tomographic images of
patients with severe COVID-19 disease revealed
“ground glass opacities”, often associated with areas
of airway edema, in the patient’s lungs. Consistent
with ARDS, dense hyaline material was found in the
lungs of autopsy cases [106,107]. Thick, respiratory
secretions are also a prominent feature of severe
COVID-19 respiratory disease [105,108].

In addition to acute COVID-19 respiratory dis-
ease, many individuals suffer persistent, debilitating
symptoms of PASC [8�10]. PASC cases vary in
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severity and duration and can present symptoms
ranging from respiratory difficulty and fatigue to neu-
rological issues [109]. While acute COVID-19 lasts
for 1�4 weeks, PASC symptoms can persist for
months [8,98,110,111]. Approximately a third of
patients developing PASC experienced asymptom-
atic acute COVID, suggesting that PASC is possible
regardless of the severity of the acute COVID infec-
tion [112]. One study on Italian Healthcare Workers
found obesity significantly predisposes participants
to PASC [113]. Other metabolic and autoimmune
diseases have been implicated [113,114]. In light of
the ongoing COVID-19 pandemic and the uncertain
pathogenesis of PASC, many countries are imple-
menting programs dedicated to understanding
PASC and similar post-infection syndromes [99].
One of the most severe, long-term manifestations

of COVID-19 is lung fibrosis [115,116]. This can be
highly debilitating, requiring long-term oxygen ther-
apy [117]. There are indications that up to a third of
patients who recover from COVID-19 ARDS develop
fibrotic abnormalities [118]. The severity of ARDS
and the duration of illness seem to be important pre-
dictors of pulmonary fibrosis in COVID-19 [119,120].
For a subset of these patients, lung transplantation
is the only treatment option [121]. In these patients,
extensive fibrotic lung injury presents on average
79 days from the time of the first COVID-19 symp-
toms or first positive test for SARS-CoV-2 [122,123].
COVID-19 pulmonary fibrosis appears to be distinct
from idiopathic pulmonary fibrosis (IPF) and other
fibrotic lung diseases that can take decades to
develop [124�127]. However, only a handful of stud-
ies have probed into the mechanisms that lead to
fulminant lung fibrosis in patients with COVID-19
[122,128,129].
In addition to lung fibrosis, SARS-CoV-2 has been

demonstrated to induce profound effects in the vas-
culature including intussusceptive angiogenesis,
endothelial cell injury, vascular remodeling and
changes in vascular tone. These changes have
been summarized in a pair of articles [130,131]. The
effects of SARS-CoV2 in the pulmonary circulation
are significant since not only were they impacted by
thrombotic process in the early stages of SARS-
CoV2 infection, but pulmonary vascular sequelae
following COVID-19 is increasingly recognized as a
potential public health problem [132].
For further information, we refer the reader to sev-

eral excellent reviews summarizing the clinical fea-
tures and epidemiology of PASC [133�135].
HA is abundant in acute COVID-19 ARDS

HA is increased in the lungs of individuals with
COVID-19. This was first demonstrated by Hellman
et al., who showed HA staining in cadaveric histo-
logic lung tissue sections from deceased COVID-19
patients [14]. Similar findings were reported in pre-
prints or speculated upon earlier in the pandemic
[13,136]. In these and other studies, significant HA
staining was found in intra-alveolar spaces, particu-
larly in areas of necrosis and inflammation, together
with diffuse hemorrhage and hyaline membranes
[137,138]. Consistent with this, genes involved in
HA metabolism were over-represented in bronchoal-
veolar cells infected by SARS-CoV-2 [139]. HA syn-
thases expression (HAS1�3) is likewise
significantly upregulated in lung tissue of COVID-19
patients [140].

HA is abundant in the respiratory secretions of
patients with severe COVID-19 compared to healthy
patients [14,136]. A recent study observed greatly
increased HA content (predominantly LMW-HA) in
sputum from recently intubated patients along with
increased DNA from dead or dying cells [137]. Treat-
ment with hyaluronidase and DNase demonstrated
that these two polymers contribute to the thick, tena-
cious respiratory secretions seen in COVID-19
ARDS [137]. The increase in the amount of HA may
contribute to the respiratory pathophysiology of
COVID-19 ARDS, including fluid accumulation, air-
way plugging, and reduction of oxygen exchange in
the lung, leading to respiratory failure [141]. This
LMW-HA may drive further inflammatory responses.
Alternatively, it may be that the accumulation of HA
fragments is not "an accumulation of pro-inflamma-
tory HA fragments" but rather removing the anti-
inflammatory HMW-HA via a competitive inhibitor
mechanism [38]. More research is needed to tease
these relationships apart.

Along with HA, hyaladherins levels are also
altered in the lung. Increased versican and dimin-
ished TSG-6 were observed in lung sections from
deceased patients with COVID-19 ARDS compared
to other ARDS cases [137]. However, as discussed
above, the impact of TSG-6 on HA in the lung is
complex and the impact of TSG-6 levels on COVID-
19 pathophysiology is unclear.

Serum HA is likewise associated with the patho-
genesis of severe COVID-19. This is supported by
Queisser et al., who reported that circulating HA
fragments and serum hyaluronidase were strongly
associated with organ failure and increased inflam-
matory cytokine levels in patients with COVID-19
[55]. Furthermore, serum HA has been identified as
a predictor of COVID-19 disease severity [138].
Plasma HA levels during early infection and admis-
sion to healthcare facilities may similarly distinguish
severely ill patients with COVID-19 [14,142]. Gene
expression studies of cells in BAL fluid from COVID-
19 patients further implicated HA in a “bradykinin-
storm” signature associated with severe disease
[140]. It has further been proposed based on tran-
scriptomic and metabolomic studies that glutamine
deficiency and overproduced HA is the central meta-
bolic characteristic of severe, acute COVID-19
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[143]. Together, these reports support a pathological
role for HA in humans with COVID-19 disease.
Several factors may contribute to HA production

during acute COVID-19. As noted above, SARS-
CoV-2 infection triggers a “storm” of pro-inflamma-
tory cytokines [144], leading to pronounced airway
inflammation and systemic lymphocytopenia
[145�149]. This includes injury to the endothelial
glycocalyx, a pericellular structure which contains
hyaluronan [150�152]. At an early stage, the
infected cells also release inflammatory cytokines
and chemokines such as IL-1b, IL-8, IL-18 [104],
IL6, Type I interferon, and TNF-a [153]. Increased
levels of the inflammatory cytokine IL-6 correspond
to a greater need for mechanical ventilation [14].
Type 1 interferon production has likewise been
associated with acute respiratory disease [154,155].
Along with driving HA production, these factors fur-
ther promote immune activation and neutrophil
degranulation, leading to the release of reactive oxy-
gen species, proteases, and other factors that per-
petuate the inflammatory cascade [156].
Several of these cytokines, including IL-6, IFNy,

and TNFa, are known to drive HA production in
other contexts [52]. These include in-vitro experi-
ments observing the effect of pro-inflammatory cyto-
kines on HA synthesis in human umbilical cord
endothelial cells [157] and orbital fibroblasts [158].
In a mouse model of COVID-19 infection, HA pro-

duction in the lung could be triggered by IL-13
administration and reduced by blockade of IL-13 in
conjunction with less HAS1 expression, suggesting
that this cytokine could contribute to HA levels in
COVID-19. Consistent with this, IL-13 was increased
in serum samples from a cohort of 178 COVID-19
patients [159] and in a second study of 138 COVID-
19 patients [160]. However, in another study of 82
patients with severe COVID-19, IL-13 was
decreased [159]. IL-13 was also not increased in a
small study of human respiratory secretions from 22
patients [137]. Similarly, IL-13 was not found to be
elevated in cadaveric lung tissues from a small
cohort of 6 COVID-19 patients compared to controls
with influenza [161].
Along with these conflicting data on IL-13 levels,

the data on IL-13 contributions to COVID-19 patho-
physiology are also unclear. Blockade of IL-4/IL-13
signaling with dupilumab led to significantly reduced
ventilation and death in COVID-19 patients already
on this drug. [162]. However, IL-13 was found to be
protective against SARS-CoV-2 infection in vitro
[163,164]. Further study and data from additional
cohorts are needed to resolve the role of IL-13 and
the value of targeting this cytokine therapeutically in
COVID-19.
The hypoxic conditions in the COVID-19 lung can

also trigger the hypoxic adenosinergic response
[130]. This results in elevated expression of the
adenosine A2B receptor [165], which has been
shown to mediate HAS2 expression and subse-
quently lead to production of HA from macrophages
and smooth muscle cells [74,166].

The cells that produce HA in acute COVID-19
infection are likewise unclear. HA is produced by
many cell types in the lung, as reviewed elsewhere
[59,167], including many of the same epithelial cells,
endothelial cells, fibroblasts and macrophages that
can be infected by SARS-CoV-2. However, we find
that cell types that can be infected with SARS-CoV-
2, including respiratory tract epithelial cells in air-liq-
uid-interface (ALI) cultures and lung organoids, pro-
duce minimal amounts of HA upon viral culture
(unpublished observations). This suggests that
bystander cells, and not primary infected cells are
likely to produce HA in response to COVID-19 infec-
tion. Ravindra N, et al. observed increased inter-
feron-stimulated gene (ISG) induction in bystander
and some infected cells in response to interferons
released by specific infected cells [168]. While both
bystander and infected cells experience heightened
ISG activity, differentiated gene and cytokine
expression found by the study between the two cell
states support a unique role for bystander cells.

Together, based on this report we propose that
SARS-CoV-2 infection triggers HA production by
bystander cells as part of an anti-viral inflammatory
response (Fig.1) and suggest that inhibition of HA
could be a therapeutic target in severe COVID-19
ARDS. Additional work is needed to implement this
idea and understand how HA shapes the inflamma-
tory microenvironment. dummy citation Fig.2
HA in “long” COVID (PASC)

PASC is both common and devastating [169,170].
In one UK-based study of 1.1 million patients with
PASC, the duration of symptoms was over 12 weeks
for 65%, and over 20% experienced “persistent
COVID-1900 disabling symptoms [171]. Chronic
shortness of breath or dyspnea is a particularly com-
mon and debilitating symptom of PASC and is
thought to reflect post-infectious sequalae in the
lung [172]. A recent meta-analysis found that up to
80% of patients display one or more post-acute
COVID-19 symptoms, with fatigue and shortness of
breath (dyspnea) being among the most common
[173]. Some groups have reported that over
18�25% of PASC patients have structural lung
abnormalities and dyspnea [169,170,174].

The pathophysiology underlying these pheno-
types is unclear. Moreover, it is unknown whether
the same disease mechanisms are involved across
the entire spectrum of PASC. This uncertainty,
together with the increasing relevance of PASC in
healthcare, highlight the need to develop biomarkers
and therapeutic strategies to identify, prevent, and
treat lung disease in PASC.



Fig. 1. A model for HA production in the COID-19 infected lung. A. HA production by airway cells in response to viral
triggers. Inflammatory cytokines and viral PAMPs, including dsRNA, trigger HA production by respiratory epithelial cells.
This HA production is mediated by HA synthases, most notably HAS2. The accumulation of HA fragments may perpetu-
ate the inflammatory casecade associated with infection. B. While dying cells infected with SARS-CoV-2 make minimal
HA, infection drives robust HA production by respiratory epithelial cells. This, together with DNA released from dead cells,
results in thick, tenacious airway secretions in COVID-19 acute lung infections.
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While several independent reports have docu-
mented increased serum and sputum HA levels
in patients with acute COVID-19, there are very
little data on HA levels in PASC. A recent report
indicated that perivascular HA levels were
increased in lung tissue samples of patients with
COVID-19 and non-resolvable COVID-19 (NR-
COVID-19) [175]. Interestingly, this was not asso-
ciated with increased in HAS1�2 expression lev-
els but rather reduced levels of CD44, potentially
implicating impaired HA clearance in these
effects. A study of post-COVID-19 liver fibrosis
likewise reported that serum HA was elevated in
Fig. 2. A model for how HA might contribute to PASC patho
lae in response to acute SARS-CoV-2 infection. In severe ac
secretions, edema, and impaired gas exchange typical of AR
drives further inflammation. Most individuals clear this HA via h
ladherin levels or function are impaired, HA persists and promo
individuals with this condition and that HA levels
were associated with liver stiffness and elevated
liver enzymes [176]. However, while reports of
post-COVID-19 lung fibrosis are beginning to
appear in the literature [177], much remains
unknown about this devastating condition.

Despite the lack of published data, a role for HA in
PASC would be consistent with the abundance of
HA in acute COVID-19 and the well-established role
of HA in other chronic inflammatory and fibrotic dis-
eases [69,78,178�186], a role for HA in long-COVID
is worthy of further study. We propose that robust
HA production in the lungs and peripheral tissues
physiology. Thick, HA-rich hyaline material fills lung alveo-
ute COVID-19 infection, this can lead to thick respiratoty
DS. This HA is catabolized over time into LMW-HA, which
yaladherin-mediated cellular uptake. However, when hya-
tes fibrosis and poor gas exchange (respiratory PACS).
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contributes to the pathogenesis of severe acute
COVID-19 and a subsequent inability to clear these
HA fragments contributes to post-COVID-19 fibrotic
syndromes and to the chronic inflammatory and met-
abolic derangements associated with long COVID-
19.
Taken together, these data support that HA is

abundant in COVID-19 PASC, and inhibition of HA
could be a therapeutic target with the potential to sig-
nificantly improve clinical outcomes for patients with
severe COVID-19 PASC.
HA is a novel therapeutic target in
COVID-19

Existing therapies to treat COVID-19 infection which
target viral replication (e.g. Remdesivir) or systemic
inflammation (e.g. Dexamethasone) are not indicated
as treatments for post-COVID-19 fibrosis. Similarly,
anti-fibrotic agents such as Nintedanib and Pirfenidone
[115,187,188] have shown modest effects in COVID-19
induced fibrosis [115,189�191]. This highlights the
need to develop strategies to identify, prevent, and treat
lung fibrosis in COVID-19 patients. The data presented
in this review suggest that it may be beneficial to target
HA in COVID-19, as was originally suggested by Shi et
al., early in the pandemic. Potential options include tar-
geting the production of HA during infection, post-pro-
duction HA degradation via hyaluronidases, and using
HMW-HA as an anti-inflammatory therapy.
Dupilumab, an IL-13 antagonist and an already

approved therapy, is another potential therapeutic
option to block HA production [162]. In a recent
clinical trial of 19 patients who received dupilu-
mab and 21 controls, there were no differences in
the proportion of patients on mechanical ventila-
tion at either 28 or 60 days. There was a differ-
ence of 2 deaths in the dupilumab group (2/19;
10.5%) versus 5 deaths in the control group (5/
21; 23.8%) at 60 days but this difference was not
significant (Unadjusted HR: 0.40 (0.08�2.05))
until the data were adjusted for sex and mechani-
cal ventilation as a time-varying predictor
(Adjusted HR: 0.05 (0.004�.72)) [162]. Larger,
better controlled studies are needed to explore
dupilumab as a potential therapy in COVID-19.
One molecule known to inhibit HA synthesis is 4-

methylumbelliferone (4-MU), also known as hymecro-
mone [192�196]. 4-MU is a competitive substrate for
UDP-glucuronyl transferases (UGTs), depleting one of
the HA precursors, UDP-glucuronic acid [197]. 4-MU
also indirectly reduces the expression of mRNA
transcripts involved in HA synthesis [192,198].
The main metabolite of 4-MU, 4-methylumbelli-
feryl glucuronide (4-MUG), has also been shown
to be bioactive [199]. In the lung, 4-MU reduces
HA and ameliorates disease in mouse models of
lung infection [85,200,201], lung metastases
[202], pulmonary hypertension [71], and pulmo-
nary fibrosis [203]. Work from our lab and others
has shown that the immunosuppressive effect of
4-MU is mediated in large part through inhibition
of antigen presentation and the induction of anti-
inflammatory Foxp3þ Tregs [204�206].

Tantalizingly, 4-MU is already an approved
drug in Europe, currently used to treat biliary
spasm [207�210]. It is given orally and is safe
and well-tolerated [192,197,208�217]. A Stage 1
clinical trial of 4-MU in healthy human volunteers
was recently completed and demonstrated inhibi-
tion of sputum HA levels at drug dosages cur-
rently approved in Europe. This suggests that it
may be possible to repurpose 4-MU to inhibit HA
production and prevent fibrosis in COVID-19 and
other conditions. [75].

In pursuit of this goal, a single-center, randomized,
placebo-controlled, double-blind clinical trial is currently
exploring this at Shanghai Zhongshan Hospital
(NCT05386420). This follows on the heels of an earlier
trial that was performed in China that yielded tantalizing
results that were unfortunately difficult to interpret due to
issues with study design [218].

Dupilumab, hyaluronidase and 4-MU have all
been clinically approved for other indications and
could be repurposed to treat COVID-19. HAdases
such as PH20 have been used to enhance the
absorption and dispersion of injected drugs, for
subcutaneous fluid administration for hypoder-
moclysis, and for subcutaneous urography to
improve absorption of radiopaque agents. PH20
could be repurposed to treat COVID-19. Thinning
of the fluid to improve lung clearance is a com-
mon goal across a range of diseases with respira-
tory inflammation [219�222]. Indeed, intranasal
administration of exogenous HAdase was
reported to sufficiently reduce the level of lung
HA content, thereby restoring the lung function in
the influenza mouse model [53]. In vitro treatment
of acute COVID-19 respiratory secretions with
HAdase decreased the flow resistance of thick
samples [137].

A number of studies have shown encouraging
results in treating inflammatory lung diseases with
aerosolized HMW-HA [63,179,223], including in
patients with bronchial asthma [224], cystic fibrosis
[225,226], in children with recurrent upper respira-
tory infections [227], and in patients with COPD
[228,229]. A feasibility and outcomes trial for the use
of HMW-HA in patients with severe COVID-19 to
prevent late-stage COVID-19-associated cytokine
storm is currently underway (NCT04830020). Spe-
cifically, this trial aims to determine whether inhaled
HMW-HA protects against progression of COVID-
19-induced respiratory failure and promotes recov-
ery from COVID-19 lung disease in hospitalized
patients. Further investigation is warranted to iden-
tify whether HMW-HA treatment will improve



Hyaluronan in the pathogenesis of acute and post-acute COVID-1956
COVID-19 severe outcomes, optimal administration
methods, and dosing regimens that effectively ame-
liorate disease.
Conclusions and outstanding questions

The data reviewed here implicate HA in the patho-
genesis of severe, acute COVID-19. In particular,
HA appears to be linked to COVID-19 respiratory
secretions and to ARDS. The available studies fur-
ther suggest that serum HA could serve as a bio-
marker for severe acute COVID-19 disease. These
associations require further validation in larger, inde-
pendent cohorts.
It is not known whether HA levels are sustained or

increased in PASC. This is an exciting avenue of
investigation that requires additional research. If an
association with HA is demonstrated in COVID-19, it
may be possible to use sputum and/or serum levels
to identify patients at risk of developing lung fibrosis.
Numerous other questions remain. It is unclear

how HA accumulates and persists in COVID-19
ARDS. A more nuanced understanding of the cells
and stimuli that drive HA production in COVID-19
will be essential to define mechanisms of HA accu-
mulation.
The receptors and pathways involved in HA con-

tributions to COVID-19 pathophysiology are
unknown [230,231]. There are limited data on the
role of CD44 in COVID-19. Donlan et al. [138], dem-
onstrated that blocking of CD44 in mice infected
with SARS-CoV-2 reduced clinical scores (an obser-
vational metric which includes data on eye rubs,
weight loss, activity, and posture) but no survival
benefit. Further complicating interpretation of these
data, anti-CD44 antibodies are known to trigger neu-
tropenia, platelet depletion, and impaired leukocyte
migration [232] and could impact this model and
SARS-CoV-2 susceptibility in non-specific ways.
Studies with CD44-/- mice have not been performed.
Further investigation is needed on this topic.
More generally, we need to learn more about how

HA shapes selective pro- and anti-inflammatory
microenvironments in the lungs to develop effective
treatments that protect against the development of a
pathological HA matrix while maintaining an anti-
inflammatory or pro-resolving matrix.
More studies that determine how HA promotes

pro-fibrotic responses in COVID-19 and the path-
ways implicated are needed. Nonetheless, HA is a
promising potential target and biomarker in this terri-
ble disease.
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